Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy.
نویسندگان
چکیده
The essential oil of Melaleuca alternifolia (tea tree) has broad-spectrum antimicrobial activity. The mechanisms of action of tea tree oil and three of its components, 1,8-cineole, terpinen-4-ol, and alpha-terpineol, against Staphylococcus aureus ATCC 9144 were investigated. Treatment with these agents at their MICs and two times their MICs, particularly treatment with terpinen-4-ol and alpha-terpineol, reduced the viability of S. aureus. None of the agents caused lysis, as determined by measurement of the optical density at 620 nm, although cells became disproportionately sensitive to subsequent autolysis. Loss of 260-nm-absorbing material occurred after treatment with concentrations equivalent to the MIC, particularly after treatment with 1,8-cineole and alpha-terpineol. S. aureus organisms treated with tea tree oil or its components at the MIC or two times the MIC showed a significant loss of tolerance to NaCl. When the agents were tested at one-half the MIC, only 1,8-cineole significantly reduced the tolerance of S. aureus to NaCl. Electron microscopy of terpinen-4-ol-treated cells showed the formation of mesosomes and the loss of cytoplasmic contents. The predisposition to lysis, the loss of 260-nm-absorbing material, the loss of tolerance to NaCl, and the altered morphology seen by electron microscopy all suggest that tea tree oil and its components compromise the cytoplasmic membrane.
منابع مشابه
Frequencies of resistance to Melaleuca alternifolia (tea tree) oil and rifampicin in Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis.
This study was conducted to determine the frequencies at which single-step mutants resistant to tea tree oil and rifampicin occurred amongst the Gram-positive organisms Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. For tea tree oil, resistance frequencies were very low at <10(-9). Single-step mutants resistant to tea tree oil were undetectable at two times the min...
متن کاملIn vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi.
The in vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes (n = 106) and filamentous fungi (n = 78) was determined. Tea tree oil MICs for all fungi ranged from 0.004% to 0.25% and minimum fungicidal concentrations (MFCs) ranged from <0.03% to 8.0%. Time-kill experiments with 1-4 x MFC demonstrated that three of the four test organisms were still detected after 8 h of t...
متن کاملEffects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility.
This study examined the effect of subinhibitory Melaleuca alternifolia (tea tree) essential oil on the development of antibiotic resistance in Staphylococcus aureus and Escherichia coli. Frequencies of single-step antibiotic-resistant mutants were determined by inoculating bacteria cultured with or without subinhibitory tea tree oil onto agar containing 2 to 8 times the MIC of each antibiotic a...
متن کاملAntimicrobial properties of tea tree oil
Phytomedicine such as tea tree (melaleuca) oil have become increasingly popular in recent decades. This essential oil has been used for almost 100 years in Australia but is now available worldwide both as neat oil and as an active component in an array of products. The primary uses of tea tree oil have historically capitalized on the antiseptic, antifungal, antiviral and anti-inflammatory actio...
متن کاملTolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes.
OBJECTIVES The essential oil of Melaleuca alternifolia (tea tree oil) and its components have antimicrobial activity against a wide range of Gram-positive and Gram-negative bacteria, fungi and viruses. The mechanism(s) by which Pseudomonas aeruginosa NCTC 10662 maintains a decreased susceptibility to tea tree oil and components was investigated. RESULTS Ethylene diamine tetraacetic acid enhan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 46 6 شماره
صفحات -
تاریخ انتشار 2002